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Structural stability, local topology and electron count in small 
s-valent clusters 
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Abstract 

The relative stability of three-, four-, five- and six-atom s-valent clusters has been investigated within a nearest- 
neighbour tight-binding Htickel model. The predicted structural trends as a function of electron count are related 
directly to the cluster topology by using the ring approximation to the bond order. The importance of cluster 
connectivity rather than symmetry is stressed. 

1. Introduction 

Recently the use of local coordination polyhedra has 
been shown to provide a simplying classification of 
elemental, binary and ternary structure types [1-3]. It 
has been found, for example, that 95% of all reported 
elemental structural modifications can be classified with 
just seven different local coordination polyhedra or 
atomic environment types [3], whereas 92% of the local 
atomic environments found in cubic intermetallic struc- 
ture types can be described by only 21 different local 
coordination polyhedra [2]. It is therefore very important 
for structural prediction to understand the factors de- 
termining the choice of atomic environment type and 
hence the possible structure types. 

The study of the stability of small clusters is an ideal 
area for examining the factors which control structural 
stability, since clusters have the ability to take many 
different atomic configurations owing to the lack of the 
constraint of long-range periodicity (see e.g. Table 1 
of ref. 4). During the past few years there has been 
much progress in the first-principles prediction of cluster 
stability. Here, however, we will use the simplest possible 
nearest-neighbour tight-binding (TB) Htickel model in 
order to demonstrate the close link between structural 
stability, local topology and electron count. This close 
link has already been stressed by numerous authors 
(see refs. 5-9 and references cited therein). We will 
make the connection more transparent for s-valent 
systems by using the recently proposed ring approxi- 
mation for the bond order [10, 11]. 
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The outline of the paper is as follows. In Section 2 
we present the nearest-neighbour TB HSckel model 
for describing the energetics of s-valent clusters. The 
structural energy difference theorem [12] is introduced, 
thereby allowing a direct prediction of the relative 
stabilities of different symmetric clusters in terms of 
the bond energy alone. In Section 3 the predicted 
structural trends are interpreted in terms of the local 
topology about the bond by using the ring approximation 
for the bond order. In Section 4 we conclude. 

2. The TB Hiickel model 

The binding energy per atom for a cluster of • s- 
valent atoms may be written in the form [13, 14] 

U-- U, op + Ubood (1) 

where Urcp is a semiempirical pairwise repulsive con- 
tribution, namely 

1 
Ur.p-  2J--,~,i 'dp(R'i) (2) 

and Ubo.d is the attractive covalent bond energy, namely 

1 ~ f . e ~  (3) Ub°"d = /V 

with f ,  the electron occupancy of the eigenvalue e,. 
For the symmetric clusters considered in this paper 
the eigenvalues are obtained by solving the nearest- 
neighbour orthogonal TB secular equation 

[ H -  d[ = 0 (4) 
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where I is the unit matrix. The hamiltonian matrix H 
has zero elements everywhere except between nearest- 
neighbour sites i and j when H~j= -he, where c labels 
the particular cluster geometry. Note that Hij is negative 
since it corresponds to the overlap of two s-orbitals in 
a negative potential; hc is therefore a positive quantity. 

Figure 1 shows the resultant eigenspectra of different 
symmetric clusters with up to six atoms, the energy 
scale of each cluster being set by the appropriate value 
of he. The clusters include the most stable ground state 
geometries of neutral and singly ionized systems which 
were found by Wang et al. [4] in their global search 
over all geometries constrained by the same nearest- 
neighbour distance. We have ordered the cluster ge- 
ometries in Fig. 1 from left to right according to whether 
they are three dimensional, two dimensional or one 
dimensional respectively. For a given dimension they 
are ordered from left to right according to the degree 
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Fig. 1. Eigenspectra of three-, four-, five- and six-atom clusters 
in units of he, the magnitude of the nearest-neighbour bond 
integral for a given cluster. The numbers in parentheses give 
the degeneracy of the level. 

of skewness of their eigenspectrum. This is measured 
by the normalized third moment 3/2 /z3//z2 , where the pth 
moment of the eigenspectrum is defined by 

(5) 
n 

For three-atom clusters the triangle and linear chain 
have a skewness of -0.41 and 0 respectively. For four- 
atom clusters the tetrahedron, rhombus, square and 
linear chain have a skewness of -0.58, -0.38, 0 and 
0 respectively. For five-atom clusters the trigonal bi- 
pyramid, monofinned tetrahedron, square pyramid, 
close-packed layer, pentagon and linear chain have a 
skewness of - 0.55, - 0.47, - 0.38, - 0.34, 0 and 0 
respectively. For six-atom clusters the trigonal tripyr- 
amid, octahedron, pentagonal pyramid, trigonal prism, 
close-packed layer, hexagon and linear chain have a 
skewness of -0.51, -0.41, -0.34, -0.16, -0.31, 0 
and 0 respectively. 

This varying degree of skewness of the TB eigen- 
spectra may be related directly to the topology of the 
clusters as first shown by Cyrot-Lackmann [15]. It follows 
from eqns. (4) and (5) that 

lzp = ~ , <  = ~(HP) ,~  = T r H  p (6) 
n n 

However, because the trace is invariant with respect 
to the choice of basis functions which are related by 
a unitary transformation, we may work with the basis 
of s-orbitals on the different atomic sites (labelled by 
i) rather than the basis of eigenfunctions (labelled by 
n). That is, 

~p = TrH p = E(HP), (7) 
i 

so that using matrix multiplication we have 

I~p = ~_, H, ,H, ,2. . .Hip_t ,  (8) 
i, i l , i 2 , . . . , i p - i  

Thus the second moment/zz is given by summing over 
all paths of length two from i ~j---)i, namely 

/z2 = .~.'Hij//jl (9) 
,,j 

whereas the third moment P-3 is given by summing over 
all paths of length three from i ~j--* k--* i, namely 

1~3 = ~,'H,~H~kH~ (10) 
iik 

The prime in the summation indicates that i ¢ j ¢ k ,  
since the diagonal on-site energies H ,  vanish because 
the bond energy in eqn. (3) is defined with respect to 
these on-site energies. 

The skewness is therefore related to the number of 
three-member rings ijk present in the cluster. Consider, 
for example, the pentagonal pyramid (which we will 
label cl) and the trigonal prism (which we will label 
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c2), both consisting of six atoms as illustrated at the 
bottom of Fig. 1. It follows from eqns. (9) and (10) 
that for the pentagonal pyramid we have 

/x(2 ~° = (5 × 3 + 1 × 5)h2, = 20h~, (11) 

and 

ix(3 ¢I)= - (5 × 4 +  1 × lO)h~, = - 3 0 h  3, (12) 

so that /x3//x32/2= -0 .34  as noted earlier. On the other 
hand, for the trigonal prism we have 

tx(ff ) = (6 × 3)h22 = 18h~ (13) 

and 

/x(3 ~2) = - (6 × 2)hc3~ = - 12h3~ (14) 

so that 3'i2- /~3//~2 - - 0 . 1 6  as noted earlier. 
The relative structural stabilities of the different 

cluster geometries will be predicted by using the struc- 
tural energy difference theorem [12]. This states that 
the difference in the total energy per atom, AU, between 
two systems in equilibrium under a binding energy law 
of the type given by eqn. (1) is, to first order in AU/ 
U, 

m u =  ( mfbond)AUrep=O (15) 

That is, the difference in the total energy per atom is 
simply the difference in the bond energy provided that 
the bond lengths have been adjusted so that the clusters 
have identical repulsive energies. 

We will assume that the repulsive pairwise potential 
q~(R) in eqn. (2) is proportional to the magnitude of 
the sscr bond integral h(R), namely 

cI~(R) cx hA(R) (16) 

The index A is therefore a measure of the steepness 
of the repulsive pair potential compared with that of 
the attractive bonding contribution. For hydrogen [16, 
17] and most sp-bonded elements [6, 18, 19] A = 2. For 
lithium Abell [17] found that the much larger value 
of A=8 was required in order to fit the molecular 
binding energy curves within an s-valent TB H/ickel 
model. Here we will consider the three values A = 2, 
3 and oo. The last value corresponds to an infinitely 
steep repulsive pair potential which implies the fixed 
nearest-neighbour distance taken by Wang et al. [4] in 
their cluster studies. 

The structural energy difference theorem allows the 
nearest-neighbour bond integral h~ for any cluster c to 
be given in terms of the bond integral of some reference 
cluster. Taking the dimer as reference with bond integral 
ho and setting AU~p=0, we have from eqns. (2) and 
(16) that 

1 ~h~(Ri~) = h~ (17) 
./Y ~.~ 

where h(Rij)=hc for nearest neighbours i and j. Thus, 
for example, the pentagonal pyramid will have 

(5 x 3  + 1 xS)hL =h~ (18) 

whereas the trigonal prism will have 

(6 × 3)h{2 = ho ~ (19) 

i.e. hc,=ho/( lOx3) ~/~ and hc2=ho/31/~. We see that for 
A= w, hc,=hc2=ho, i.e. the nearest-neighbour bond 
integral is cluster independent. 

The upper panels of Figs. 2-5 show the predicted 
bond energies per atom for three-, four-, five- and six- 
atom clusters respectively as a function of the electron 
count N for the three different values of A, namely 
A=2, 3 and co. The influence of A on the relative 
stability is clearly illustrated by Fig. 2. We see that for 
A = ~ ,  when all clusters take the same nearest-neighbour 
bond length and hence have identical bond integrals, 
the triangle is predicted to be the most stable cluster 
for the neutral monovalent system, whereas for A=2 
and 3 the linear chain is the most stable. Thus whereas 
the alkalis take a (Jahn-Teller-distorted) triangular 
configuration with their large values of A (e.g. A---8 for 
lithium [17]), hydrogen remains linear since A = 2 [16, 
17]. As expected, decreasing A favours less topologically 
close-packed structures with lower coordination. The 
singly ionized cluster corresponding to N =  2 takes the 
triangular geometry for all three values of A. 

The A= oo upper panel of Figs. 3-5 show that the 
rhombus, close-packed plane and pentagonal pyramid 
are the most stable geometries for the neutral four-, 
five- and six-atom clusters respectively, whereas the 
singly ionized systems take the rhombus, monofinned 
tetrahedron and trigonal tripyramid geometries re- 
spectively, as predicted by Wang et al. [4]. Again we 
see that a decrease in A stabilizes lower-coordinated 
structures, so that for A=2 the most stable geometry 
is the linear chain for four- and five-atom neutral 
clusters and the hexagon for six-atom clusters. 

We also see that for A = 2 the dimer has the lowest 
binding energy per atom, namely - 1, whereas for A = oo 
the dimer has the highest energy of all the ground 
state clusters. This is consistent with hydrogen being 
dimeric but the alkalis being close-packed metals. 

As expected from Fig. 1, the geometries with skew 
eigenspectra are the most stable for low electron count, 
whereas those with no three-member rings are the most 
stable for high electron count (excluding the square 
pyramid for A = oo). The link between the structural 
trends as a function of electron count and the topology 
of the cluster will be provided in the next section by 
the ring approximation to the bond order. 
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3. Origin of  the structural trends 

Although an analysis in terms of  the third moment  
shows that the skewness of  a given eigenspectrum is 

due to the presence of  three-member rings within the 
cluster, in general the inclusion of  higher moments  
leads to a notoriously ill-conditioned problem (see ref. 
20 and references cited therein). Recently a many-atom 
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Fig. 4. Average bond energy per atom (in units of  h0) as a func t ion  of  electron count N for five-atom clusters. 

expansion has been derived for the bond order which 
is fairly rapidly convergent [21]. In order to understand 
the trends displayed in Figs. 2-5, we will use this 
expansion in its simplest form, namely within the so- 
called ring approximation [10, 11]. 

The bond energy per atom of eqn. (3) may be written 
explicitly as a sum over the individual bond contributions, 
namely 

1 S"rru (20) U ~ o ° d -  ~ , . ,  ,~ bo°d 
i , j  
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Fig. 5. Average  bond energy per atom (in units of  h0) as a function of  e lectron count  N for six-atom clusters. 

Following Coulson [22], the individual bond energy 
between atoms i and j is given by the product of the 
bond integral and the bond order, namely 

U ~ n a  = - 2 h ( R ~ j ) @ i j  (21) 

where the prefactor 2 assumes spin degeneracy. (Note 
that there is no explicit spin-dependent exchange energy 
in the TB Hiickel secular equation (4), so that the 
energy of the singly occupied eigenstate with a given 
spin is equivalent to the energy of the hypothetical 
non-magnetic state corresponding to opposite spin states 
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each occupied by half an electron.) The bond order 
Oq is defined as the difference between the number 
of electrons of a given spin in the bonding, 2-1/2(@i + ~.), 
and antibonding, 2-m(@,-0j) ,  states. Thus the bond 
order is unity for the neutral dimer but is expected to 
be less than unity for the bonds in other clusters owing 
to the additional bonding with neighbouring atoms. 

The dependence of the bond order on the local 
environment is given within the ring approximation by 
[10, 11] 

(9ij= 2 ~"g (22) 
b n - -  1 

The reduced susceptibility ;f, is a function of the number 
of electrons (of both spins) per atom, N / J .  It is given 
by the analytical expression 

sin' n+  1 

where 4~F is related to the number of electrons per 
atom, N / J ,  through 

N 24~F ( sin(24~F).~ (24) 
~ - -  g 1- 24)v ] 

Figure 6 shows the behaviour of the first five reduced 
response functions )?,, as a function of the number of 
electrons per atom. We see that the number of nodes 
(excluding the end points) equals n - 2 .  The parameter 
~ng is given by the sum over all ring-type paths of 
length n - 1 linking atoms i and j, so that the first three 
contributions entering eqn. (22) take the form 

~2'ng = llE/ij (25) 

~3 ing = Z'H~Hkj (26) 
k 

and 

~'"g= ~, 'H~Hk,H o (27) 
k 

g o.e 
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Fig. 6. Reduced response  function ~'. as a function of n u m b e r  
of electrons per  atom. 

The parameter b is an embedding function which results 
from embedding the given bond ij in its cluster en- 
vironment. It takes the second-moment form 

The results of this simple analytic model are shown 
in the lower panels of Figs. 2-5. We see that the ring 
approximation predicts the correct structural trends 
between different geometries with a fixed number of 
atoms but that it is at best qualitative with respect to 
the absolute energy. For quantitative predictions we 
must both use more accurate response functions ,f, 
and include so-called double-counting terms in & (see 
eqns. (2.8), (2.9) and (2.20)-(2.30) of ref. 11 and Fig. 
1 of ref. 21). 

The structural trends may therefore be related directly 
to the topology of the cluster through the ring ap- 
proximation of eqn. (22). Consider, for example, the 
four-atom clusters shown in Fig. 3. The bond energy 
is particularly simple to evaluate for the case where 
all bonds in the cluster are equivalent, such as for the 
square and tetrahedron. It follows from eqns. (17) and 
(20)-(28) that for A=2 the average bond energy per 
atom for the square will be given by 

Ugqo~ re = - (222 + ,f(4)h0 (29) 

whereas for the tetrahedron it will be given by 

f t e t r a h e d r o n  _ _  _ _  bo,d -- [2j(2+(4/31/2))?3+(4/3)~4]ho (30) 

Thus whereas the one-dimensional linear chain has 
only the )?2 prefactor in its expansion for the bond 
order and therefore varies in a parabolic-like fashion 
across the lower left-hand panel of Fig. 3, the two- 
dimensional square has an additional )?4 contribution 
(see eqn. (29)). From Fig. 6 this four-member ring 
contribution increases the bonding for low and high 
electron counts but decreases it in between, which can 
be seen directly by comparing the curves for the linear 
chain and square in Fig. 3. Folding the square along 
the diagonal to create the three-dimensional tetrahedron 
introduces three-member rings and therefore a )?3 factor 
(see eqn. (30)). From Fig. 6 this skews the binding 
energy curves downwards for low electron count and 
upwards for high electron count. Distorting the square 
into a rhombus also introduces three-member rings, so 
that the curve of the rhombus is skewed compared 
with that of the square. Thus in Fig. 3 we see the 
trend for A= 2 from tetrahedron to rhombus to linear 
chain to square as the electron count increases. 

The structural trend across the five- and six-atom 
clusters in Figs. 4 and 5 can be understood in a similar 
way in terms of the presence (or absence) of three-, 
four-, five- and six-member rings. In particular, the six- 
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member ring stabilizes the hexagon rather than the 
linear chain for neutral clusters in agreement with the 
well-known Htickel rule [8]. 

4. Conclusions 

The relative stability of three-, four-, five- and six 
atom s-valent clusters has been investigated within a 
nearest-neighbour TB H0ckel model. The use of the 
structural energy difference theorem has allowed their 
stability to be related to the sum of the one-electron 
eigenvalues by taking account of the appropriate change 
in the nearest-neighbour bond integrals with cluster 
geometry and coordination. The structural trends pre- 
dicted by the TB Hiickel model can be understood 
within the ring approximation: three-member rings fa- 
vouring electron counts with less than half-full bonds, 
four-member rings stabilizing clusters with low and high 
electron counts and six-member rings favouring clusters 
with half-full bonds. 

As stressed by Burdett [8], the connectivity of the 
cluster is more important in determining its binding 
energy than is its symmetry. This relates immediately 
to the work of Villars, Daams and others [1-4] who 
have found that the many thousands of different struc- 
ture types, characterized by symmetry, are associated 
with only a relatively few important local coordination 
polyhedra, characterized by connectivity. It remains, 
however, to discover whether these local coordination 
polyhedra or atomic environment types can be predicted 
with a few simple rules. 
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